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A GRAPHICAL DETERMINATION OF THE RADIONUCLIDE INVENTORY IN
THE CONCENTRATE AND TAILINGS FROM PROCESSING FACILITIES

D. J. Crawford

ABSTRACT

During radiological surveys of radionuclide processing
facilities, one must make a determination of the
expected inventory of all members of the three natu-
rally occurring radionuclide decay chains. A set of
graphs has been developed that ggap]ay Ege decay and
ingrowth of all members of the 23¢Th, 239y, and 235y
decay series. These graphs may be used in the field
to predict present inventories from a knowledge of
previous inventories. Equations used to generate
several of the graphs are given in tables.

I. INTRODUCTION

Natural ores have been in residence in the earth's crust for millions
of years and, as a result, contain not only the parent radionuclidés of
the uranium, actinium, and/or thorium series, but approximately equilibrium
activities of all daughters. (5111] has shown that this state of equilib-
rium exists in various degrees both in the original ore and in tailings
piles.) The ultimate goal of milling processes is usually the extraction

and refinement of quantities of 232Th, 238U, 235U, or 226

Ra from these ores.
The remainder of the processed material, or residues, retains those radio-
nuclides in the decay chains that were not removed with the finished
product. These residues are typically disposed of either at the processing
facility or at remote locations.

Radiological assessments of land areas used for the storage of either
wastes or finished products require some knowledge of the relative

activity of each member of the three radioactive decay chains. Available

information usually consists of only an estimate of the relative activities




at the time of separation or soon thereafter. It is possible to calculate
the activity of eéch chain member at an arbitrary time, t, from this

information through the use of the Bateman2

equations. Due to the
complexity of these equations, it would obviously be desirable to possess

a set of normalized graphs that contain all of the information inherent

in these relations. The author has developed such a set of graphs for

the members of the three naturally occurring decay chains. These graphs
may be used iﬁ the radiological assessment of a contaminated facility when-
ever a knowledge of the state of contamination at some earlier time is

available. An assumption has been made that the chain members do not

undergo further separation by such natural processes as leaching.
II. DEFINING EQUATIONS

The differential equation whose solution yields the number of
radioactive daughter atoms, NZ’ as a function of time is

Qﬂﬁ%&l = ANp(t) - aoNa(t) .

In this relation, N;(t) is the number of parent atoms present at time,
t, and A; and A, are the decay constants of parent and daughter,

respectively. The decay constant may be determined from the relation

A= sz.nZ/T-l/2 R

where T1/2 is the radiological half-life.

Bateman solved this equation for the nth

2

member of a radiocactive

chain

and has given a solution of
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=it -Apt exnt N -Ant
N,(t) = Cie + Cye t...+Ce = nil Cne s
where Nn(t) is the number of atoms of the nth member present at time t
and
AjAoe.s ln
C_ = ' N.
L CYRET I I PP AA}...(AH_I— A i

The decay constant, An’ has been described previously, and Ni is the
initial number of atoms of the parent radionuclide. The activity of

h

the n™ member is given by AnNn. By direct substitution of values of

A obtained from Kocher3

» the equations in Tables 1, 2, and 3 were generated.
These equations assume an initially pure sample of the parent radionuclide
with an initial activity of A0 curies. While the set of graphs contains
plots of other possible initial inventories, the equations that describe
these piots are developed in a manner analogous to Tables 1, 2, and 3

and are not included here. In these equations, A is in units of yearr's"1
and t is in years. Any term that is small enough to be neglected has

been designated by the symbol A.
III. DESCRIPTION OF THE GRAPHS

Figure 1 is a plot of the decay of an initial quantity, A_, of

4]
228p,, 228p. 2281y ond 22%a daughters.
232 |

Th sample. As has been mentioned, it is

232

Th and the ingrowth of the Ra, Ac,

it assumes an initially pure

rare that a pure sample of 232Th will be found at a survey site.

230 228

Currently employed separation processes extract Th and

232

Th along
with Th. Such circumstances hay be accounted for by the use of

several of the graphs, which will be introduced in subsequent paragraphs




a

and by the use of the insert to Fig. 1. This insert is a plot as a

22

function of time of the quantity of 8Th remaining from an initial -

224

quantity, Ao‘ Also shown is the ingrowth of the Ra daughter of

228Th. It will be noticed that 224Ra grows into equilibrium very

quickly and may be assumed (in most realistic cases) to be in equi]ibrium'
with the remainder of the initial 228Th.
Figure 2 is a plot of the decay of an initially pure sample of 238U

as a function of the time since separation. The short-lived daughters

234Th and 234mPa are shown on this figure and the insert is a plot of

234 238

the decay of any U that was extracted along wifh the U as well as

the ingrowth of the 230Th and 226Ra daughters, which arise from this

1 234 f 234 , 230Th, and 226

initia U. The quantity o u Ra that arises due

1 238

to the initia U is displayed in Fig. 3 as a function of time following

separation. These daughters appear on a time scale that is much larger

than the 234Th and 234mPa daughters since 234

238

U grows into equilibrium -

with U at a much slower rate. Inserts A and B are plots of the decay

230Th, which may have been present, and of the ingrowth

230

of any initial

of 226

Ra arising from this Th.

Figure 4 is a plot of the quantity of 235U as a function of time

following separation. Also, shown is the ingrowth of the 231

231

Th daughter,

while the insert is a plot of the growth of the Pa, 227Ac, and 223Ra

daughters. The activity of 227Th and 223

Fr may be approximated by
multiplying the value for 227Ac by the constants 0.986 and 0.014,
respectively.

Upon removal of only the parents of the three natural chains, the
remaining "tailings" activity consists of the daughter products as

well as any parents that are not extracted. If the ore has been in



existence long enough to allow for equilibrium of all members of the
decay series, the tailings will contain equilibrium activities of all
daughters. The resultant activity of a particular daughter at any time
following separation is the sum of two contributions. There will exist
the remainder of the initial daughter activity, having decayed to a

value given by the relation

A(t) = Aoe s
where
A(t) = activity at time t,
Ao = activity of the daughter at t = 0,

decay constant for the daughter.

There will also be a growth of new daughter éctivity due to the decay of
the initial inventory of eéch radionuclide, which is a precursor to the
daughter under study.

As an example, consider the activity of 228

g 232

Th that exists in a

228

sample containing all of the daughters o Th. The initial Th

activity will decay with a radiocactive half-life of 1.91 years. At the

228

same time, there will be an ingrowth of new Th activity from the

‘decay of the initial quantities of 228Ac and 228

Ra. All three contribu-
tions must be accounted for in determining the total activity. Figures
5, 6, and 7 are p]ots'as a function of time of the total activity of all
daughters of the three natural decay chains. These graphs assume that
at time t = 0, the activities of all daughters were the same, Aé. In
addition, the graphs assume complete removal of the chain parent. As in
the first four graphs (Figs. 1-4), convenient time sca]és have been

chosen in order to display the entire history of each daughter.
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Since it has been assumed that all daughters exist with the same

activity, Ao’ at t = 0, several of the graphs do not apply to the currently -

34 38U or when

234

realistic case in which 2 U is extracted along with the 2

232

228Th comes out with Th. In these cases, the activities of U and

228Th at t = 0 are depressed below the va]hes of other daughters. As a

234 d 228

result, the actual amount of each daughter below U an Th will be

less than the amount predicted assuming complete equilibrium of all
daughters following separation. Those graphs that are affected aré
shown as dashed lines and may only be employed in cases where the

activities of all daughters of the three chains were equal at time

t = 0. There is no effect on the activity of any daughter that occurs

234 228

before U and Th, and the solid graphs may be used in either case.

By way of example, consider the inventory of 224

228

Ra in a tailings pile

228 4 224

Ra, Ra, and T

224

Ac, an
228

that initially contained A0 curies each of

228

Th and Ra from N

i

A, curies of Th. Figure 5 shows the ingrowfh of

the initial quantity of 228Ra. If we find a value f for a given time

£ 224 1 228

after separation, the activity o Ra due to the initia Ra is Aof.

Due to its short half-1life compared to the next member in the decay

228Ac (228Th) contributes a negligible amount to the ingrowth of

224

series,

28

new 2 Th and 224Ra. The growth of

228

Ra due to the initial activity of

Th may be found in the insert to Fig. 1. For a given
224

A; curies of

time, a value f may be found from this graph and the activity of Ra

224

from the initial 228Th computed by A;f. Finally, the decay of Ra due

224,

to the initial Ra is shown in the insert to Fig. 5. The total activity

of 224Ra is now the sum of the three quantities determined above. If

228 224

Th also had been in an abundance of A0 curies, the inventory of Ra
could have been read directly from graph C, Fig. 5. In this case, a

factor f would be found and multiplied by Ao curies.




N

As was mentioned previously, all extraction processes currently
in use remove isotopes of the parent along with the parent itself.

238

If x percent of the U is removed from the original ore, then x percent

of 234U and 235

U will also be removed. The result is that the inventory
of all radionuc]ides in both the finished product and tailings will

depend on the value of x. Typical extraction percentages are 85, 90,

and 95%. - Figures 8 through 20 give the activity of each member of the
three Qatural chains for all three extraction fractions. These graphs

are suggested for use in the field when the extraction fraction is known.
If the fraction is not known, it is generally assumed to be 90%.4 They are
much simpler to use than the general graphs since the activity of any
radionuclide, in either the finished product or waste, may be read as a
single value from one of the graphs. All values are given as pércent

of the initial parent‘activity in the non-separated ore. As an examp1e,
consider an original ore with A0 curies of 232Th from which 90% of the
232Th and 228Th are removed. Figure 9 shows the activity of all daughters
in the finished product as a function of the time following separation.
Setting the time equal to 20 years, the activity of 228Th and 224Ra may be
seen to be approximately 0.78A. Figure 12 gives the activity of all

daughters in the waste material.
IV. USE OF THE GENERAL GRAPHS

The use of the graphs may best be illustrated by an example; the
figures are taken from a typical processing plant. From May 1951 to
February 1964, the plant processed 1.7 million tons of ore with an average

grade of 0.32% U30g. This produced 4787 tons of U30g. The steps




‘required to convert all weights to activity in curies are straightforwafd

and will not be explained here. The assumption is made that all daughters

of both 238 235

234

U and
235

U are present in equilibrium before processing and -

h 238

that U and U are carried along wit U in the concentrate.

" These assumptions lead to the results shown in Table 4. As an example,

one may determine the activity of the 226

226

Ra daughter at a given time.

238

In the concentrate, Ra grows both as a daughter of the initial U

and as a daughter of the initial 234U. Due to the extremely slow ingrowth

of 226Ra, Tittle will exist until several thousands of years. For the

purposes of this example, set the time equal to 105 years after separation.

226 1 238

Figure 3 shows the Ra activity that results from the initia U to

be (1203)(0.085) = 102.3 Ci at time t = 10° years. The insert to Fig. 2

226 5

shows the ingrowth df Ra from the initial 234U. Setting t = 10

years, a value of (1203)(0.49) = 589.5 Ci is obtained. The total activity

226

of Ra in the concentrate is then (102.3 + 589.5) = 691.8 Ci.

Turning now to the tailings, or waste products, it is noted that

226Ra has several sources of production. It is a daughter of the remaining

234 234., 234m 4 230
| 226

238U and Th

f 234Th and 234m

U, as well as a daughter of any Pa, an Th. Due

to extremely small half-lives o Pa relative to Ra,

these two daughters may be neglected with little error. The sources of

226 238, 234 230

Ra now consist of the decay of u, U, and Th, as well as the

remainder of the initial 226Ra.

238

Figure 3 gives the growth of 226Ra from U, and looking at
t = 105 years, one finds a value of (177)(0.085) = 15 Ci. The growth "
of 226Ra from the initial 230Th is shown in the insert to Fig. 3. With

t = 10° years, a value of (1380)(0.42) = 579.6 Ci is obtained. Finally,

226

the decay of the initial Ra is shown in the insert to Fig. 6. With




5 1 226

Ra has decayed. Therefore,
5

 t = 10° years, essentially all of the initia

the total activity of 226Ra in the tailings pile after 10% years is

15 + 86.7 + 579.6 = 681.3 Ci.

234

If all of the U remained in the tailings, such that all daughter

activities were the same after separation, the value would be found

5

directly from the insert to Fig. 6. Setting t = 10° years, one reads a

value of (1380)(0.91) = 1256 Ci. Note that use has been made of the

dashed curve. This has assumed an initial 238U fraction of zero. With

g 238 g 226

an initial activity of 177 Ci o U, an extra 15 Ci o Ra would be

present, as was shown in the preceeding paragraph. Therefore, the total
activity will be 1256 + 15 = 1271 Ci of 226Ra after 105 years, a drop of

only 109 Ci.

238 234

It will be noted from Table 4 that roughly 87% of the
235

U, u,

and U were removed by the extraction process. Since this fraction is_l»,

known, it is much easier to use Figs. 14 and 16 and read the values

5 22§Ra

directly from these graphs. Setting t = 10”7 years, the amount of

in the product may be read directly from Fig. 14 and will be noted as

226p. in the

being given by (0.50)(1380) = 690 Ci. The amount of
tailings may be found from Fig. 16, and setting t = 105 years, it is

found that the activity is equal to (0.495)(1380) = 683 Ci.
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Table 1. General equations for the growth of the 238U decay series

2 -1.551 x 10710t

Activity 238y = a e

-10
Activity 234Th = Ao (e-]¢55] X 10 t - e-]0050t)

-10
Activity 234mp - Ao (e=1.551 x 10 7"t _ ,-10.50t

5
+ 8338 x 1075 ¢-3-1 % 107t

234 -1.551 x 10~10¢

Activity U= Ao (e + A2.66 % 10‘7 e-'|0.50t

. - -6
- A3.05 x ]0"]6 e“3o] x ]0 t - e-2.8 X ]0 t)

-10

6

5 -
+ A8.5 « 10-24 e-3.1 x 107t -2.8 x10 “t

- 1.47 e

-6
+0.477 70-0 107t

-10 |
Activity 226Ra = A (e-1-551 x 1070t , ag 1, 1o-18 -10.50t

5 -6
S 8119 x 10735 @731 X 107t _ g 49 2.8 x 1077t
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Table 1. (continued)

-6
+ 0.48 e-9.0 X ]0 t - A1-32 x ]0'4 e’4.33 X 10 t)

A_ = initial activity of 238y

t = in years.
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232

Table 2. General equations for the growth of the Th decay series

1
228 4.932 x 10°Me  -1.205 x 107 T¢,
Activity Ra = Ao (e -e )
.. 228 24,932 x 107"t -1.205 x 107t
Activity Ac=A (e -e oo

(o)

+ .08 x 1074 £~990-3t)

x

10

=11

10 1

X

Activity 2281h = & (e74:932 t

o]

t _ 1 ge1-205 x 10

- A3.83 X ]0"8 e“99003t + 0.35e‘0-3628t)

=11 -1
Activity 224Ra - Ao (9-4.932 x10 "'t _ 1.6e"1-205 x 10 't
+ 25 89 x ]0-9 e-990.3t + 0.352e-0.3628t
A

- 8.4 X ]0"6 e"69.]1t)

232

A = initial activity of Th.
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235

Table 3. General equations for the growth of the U decay series

-10
Activity 2% = 'y .-9.76 x 10710
231 -9.76 x 10710 _ 238t
Activity Th = Ao (e”” -e )
231 -9.76 x 10710t -8 _-238t
Activity Pa = Ao (e™” + 8.95x 10" e
-5
L o213 x 107,
e 227 -9.76 x 10~ 1%¢ ~11 _-238t
Activity Ac = A (e - 1.2x10 " e
-2.13 x 107%t . & L -4 -3.2 x 10"%¢
-e "’ +76.65 x 10 " e " )
227 -9.76 x 10719 & -13 _-238t
Activity Th = Ao (e”7° - °7.37 x 10 e
22,13 x 107t | & -4 -3.18 x 10”%¢
- e * + 6.75 X ]0 e *

+ 83,71 x 1079 ¢713:51Yy

223 -9.76 x 10710t _ 4 14 -238t

Activity Ra = Ao (e 7.53 x 10
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Table 3. (continued)

5 2

_ e-2.]3 x 10 7t 0-4 e-3.18 x 10 “t

+ 2,73 x 1

-8 e-13,51t + A -9 e=22.12t)

-4 %10 3 x 10

A, = initial activity of 235,
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Table 4. Inventory of radionuclides from the
uranium and actinium decay series

Inventory before processing

Activity 238y = 234y = 238, . 238mp, . 2307, . 226p, _ 1350 i
Activity 235y = 23V < 231p, o 2275, . 2274y _ 223, _ 63 3°¢i
Inventory after processing at 87% efficiency

' (concentrate)
Activity 238y - 23% = 1203 ci

235 = 55.2 Ci

(tailings)

Activity 238y = 23% < 177 ¢4

235

U=28.1C¢Ci

Al11 daughter activities remain the same.
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