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WALKER BRANCH WATERSHED PROJECT: HYDROLOGIC ANALYSIS AND DATA PROCESSING

W. M. Snydeg'and J. W. Curlin

INTRODUCTION

This report describes the various steps in processing data from con-
tinuously recording instruments on the Walker Branch Watershed. The
objectives and organization of the Walker Branch Project are outlined in
ORNL-TM-2271 (1) and the data processing described herein is aimed at
accomplishing those objectives. Processing, as referred to here, means
all steps beginning with conversion of raw data from instrument tapes to
computer-compatible forms and ending with summaries or analyses which
provide input data for mathematical models of watershed ecosystems.

Initial emphasis is on processing of recorded rainfall and stream-
flow records, with particular treatment of the natural input event, de-
fined here as a storm. Also included, however, are basic tabulations of
rainfall and runoff which will form continuous sequential inventories of
the water resources of the subwatersheds. As processing and analytical
methods undergo continued development, we intend to add inventories and
analyses of long-term effects of base-flow on water yield of the streams
and to include chemical, biological, and mineralogical inputs-outputs of
the streams.

A1l processing methods are developed under the criterion that the
resulting hydrologic data must be of sufficient precision to detect
responses to experimental watershed treatments or manipulations. At the

same time it is fully recognized that hydrology is essentially a science

lProfessor of Civil Engineering, Georgia Institute of Technology, Atlanta,
Georgia. -




of measurement and observation of historical data, and consequently
analytical methodologies are statistically rather then deterministically

oriented.
BASIC DATA PROCESSING

Five automatic Fischer ang Porter® (F & P) Series 1548 welghing pre-
cipitation digital recorders provide a continuous rainfall record within s
triangular network superimposed over the watershed. Streamflow is digi-
tally recorded on F & P model 1542 water level recorders. Data are re-
corded on paper binary-coded, foil-backed paper tape at 5-minute punch
intervals. The precipitation gages resolve rainfall increments of 0.1
in. and are sensitive to changes of 0.025 in. of precipitation. The
stage height recorders can sense a change of 0.001 ft. Data from the

instruments are brocessed monthly.

Gage-tape to Card Data Conversion

The conversion of data from l6—channel, binary-coded, punched paper
tape to punched card form compatible with an IBM 360 computer system is
done on an F & P automatic translator and time-date sequencer. Trans-
lation is performed at the Coweeta Hydrologic Laboratory of the U.S.
Forest Service, Franklin, North Carolina under interagency agreement with
the AEC.

The punched cards are returned to the ORNL Radiation Ecology Section
without editing where the cards are then listed, edited, corrected ang

subsequently processed at the Computer Technology Center.

2Manufactured by Fischer and Porter Company, Warminster, Pennsylvania 1897k.



Rainfall Data Editing and Reduction

The raw rainfall records must be examined for obvious instrumental
errors or instrument failure. Also, a preponderant number of the obser-
vations at S5-minute intervals will show no rainfall. Data from the cor-
rected deck are, therefore, read into the computer and processed by a
program which deletes all zero-data punches. Simultaneously, each re-
tained data point is indexed by time measured from midnight (00:00) of
the first day of the month. These data are then punched into a new deck
which is greatly reduced by elimination of zero punches. The reduced deck
contains one month's data for each of 5 precipitation gages and is pre-

served for subsequent analysis.

Streamflow Data Editing and Reduction

The editing of raw data from the stage-height recorders is handled
similar to the precipitation data. Streamflow records are continuous,
however, and do not contain the extent of redundant zero records char-
acteristic of precipitation data. Data reduction for stage-height records
is accomplished by retaining time-head readings at sliding intervals.
Data are retained at 5-minute intervals for storms of short duration
during periods of stream-rise. For longer duration storms the retention
interval is expanded until long duration storms and non-storm periods
reach a maximum retention interval of 160 minutes. Data analysis is also
based on this sliding interval. The single exception is for very long
storms with durations > 64 hours; their analyses are based on data at
320-minute intervals. Further discussion of retention intervals 1is

found in the section on Definition and Detection of Storms.




Basic Rainfall Tabulation

Monthly precipitation from the edited and reduced data is summarized

and listed sequentially. Figure 1 is a prototype listing which consists

of:

(8)

(B)

(c)
(D)

(E)

(F)

(G)

(H)

Daily precipitation values at each gage in English and metric
units.

Weekly rainfall summaries for each gage. Weeks are numbered
consecutively beginning January 1.

Monthly totals at each gage.

Weighted monthly totals for each subwatershed. Values weighted
by the Thiessen method.

Number of days with rain at each precipitation gage.

Date of occurrence, amount of precipitation, and duration of the
storms identified with the procedure outlined in the following

section on Definition and Detection of Storms.

Area weighted storm averages by subwatersheds using the Thiessen
weighting technique.

Classification and frequency of storms by class and subwatershed.

In addition tothe elements shovn above the brogram computes and lists

sums of

squares (I Xi) and sums of cross products (T Xin) for subsequent

intergage correlations. Continuity of storm identification is maintained

by processing two adjacent months contiguously so that storms originating

in one month and continuing into the next month will be identified as a

single storm rather than two separate events.
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Definition and Detection of Storms

The natural unit of rainfall input to a drainage area is termed a

storm occurrence. No rigorous definition is possible for distinguishing

between significant amounts and intensities of rainfall which constitute
a storm, and insignificént amounts of no consequence to input-output
analysis of short-term events. However, it is essential that definitions
be established which can be applied in a systematic and unvarying manner
to all rainfall records. ©Such definitions will allow preparation of
storm lists unbiased by subjective selection criteria. If the definition
is converted to a numeric algorithm, the storm list can be prepared as a
step in the routine, sequential processing of the hydrologic data. This
implies that a storm will be defined on the basis of precipitation events
on the watershed, rather than on the basis of positive and detectable
stream response to some rainfall input. Since rainfall is the causal
factor it is rational that storms be identified from precipitation events
rather than streamflow phenomena. When storms are defined on the basis
of input rainfall they are not subject to definitional differences caused
by variation in the ability of the watershed to absorb and retain water,
or by varying rates excess water is released to streamflow.

Figure 2 shows the schematic diagram of the storm decision algorithm.
This algorithm detects storms when rainfall rates or volume in the precipi-
tation records exceed certain minima. It is specifically designed to make
sequential "storm" or "no-storm" decisions on each rain occurrence with-
out the need for multiple passes over the data. The diagram consists
essentially of two bounding lines on a graph of accumulated rainfall

versus time.

T T
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Each rainfall event is examined in the computer by evaluating the
total, or accumulated depth of rain which has fallen between some arbi-
trary beginning time and the time of check. If the total depth for the
elapsed time lies below the lower bounding line, the rain occurrence is
declared no-storm and zero time is advanced to the next rainfall occur-
rence. For a recording interval of five minutes this means that zero time
advances in 5-minute steps if rain is occurring at rates less than the
slope of the lower bounding line. However, if the sensitivity increment
of the digital raingage divided by 5 minutes is greater than the slope
of the lower line, this lower line is not effective. For example, if
the increment of rainfall proceeds in step of 0.1 in., the lower line
must have a slope in excess of 0.1 in./5 min or 1.2 in./hr for the
lower bounding line to be effective in declaring an immediate decision
no storm. The lower line also serves other purposes which will be dis-
cussed later.

If the locus of points of cumulative rainfall versus elapsed time
crosses upward over the lower bounding line, the zero time does not
advance. So long as the locus lies between the lower and upper bounding
lines the decision to declare the rainfall occurrences as storm or no-
storm is postponed. Eventually either of two possibilities must happen.
When the rain stops the locus becomes horizontal (zero slope) as time
advances to the right. The locus must, therefore, either cross the
lower bound, or else climb upward across the upper bound. If the former
happens, the rain is declared no-storm. If the latter happens, the rain

is declared a storm.



It is necessary to define two properties of rain occurrence, 1) the
total depth which fell and 2) the time from beginning to end of rain known
as duration of rainfall. Definition of both these properties depends upon
identifying the end of rain occurrence.

When some period without rain follows a storm rainfall period, the
accumulating locus on the graph is horizontal. If this period without
rain is of sufficient length, the locus will cross the lower bounding
line. When this happens an end of the storm has occurred. However, be-
cause of irregular time intervals the actual end of rain is not known.

To compute the end of the storm the time when the storm locus crosses
the lower bounding curve is first flagged. Increments of time are then
counted backwards in the record until a point is found where the (negative)
slope of the locus is again greater than the slope of the lower bounding
line. The beginning (counting backward in time) is the interval where
this slope exceedance first occurs in the end of the storm. The accumu-
lated rainfall from the beginning of the storm to that point is the storm
rainfall, and the elapsed time from zero to that point is the storm
duration.

The date, beginning time, total rainfall, and duration of rain for
each event are noted and printed on the Storm Table listings for each

month (Fig. 1).

Bounding Parameters for Walker Branch Watershed

The values describing the bounding lines in Fig. 2 for the Walker
Branch Watershed were chosen initially as follows: The lower bounding

line is expressed by the equation

B ol
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RSC = 0.05 AT

where AT is hours from zero-time

0.05 is in. per hr

and RSC is subcritical rainfall in in.
Any rain < RSC is rejected as a storm.

The segments of the upper bounding line are defined as

RC=0.2+0.1ATfor ATES3
RC = 0.5 for 3<ATEZL9
RC =0.05+ 0.05A T for <A T

where RC 1is critical rainfall in in. Any rain 2 RC at any time during
a rainfall event is declared a storm for purposes of further data proces-~

sing and analysis.

Streamflow Tabulations

Streamflow summaries (Fig. 3) are organized on a format similar
to the rainfall tabulations described earlier. Listings consist of the
following elements.

(A) Average daily discharge in cfs for each subwatershed.

(B) Total daily flow volume in cu ft.

(C) Parallel output of discharge as in (A) expressed in metric

units cms.

(D) Total daily flow similar to (B) expressed in cu M.

(E) Monthly totals for volumes and average flow rates.

(F) Weekly totals for volumes and average flow rates.

(G) Maximum and minimum flows for each storm.

(H) TFlow duration table showing number of day flow is in selected

flow range.
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DAILY FLOW FOR 10/68 ___

WEST BRANCH

0
__ .. VOLUME

B C
\RGE v_qg_gg___ - olsc(ﬂ)ARcE __DATE DISCHARGE _VOLUME DISCHARGE VOLUME.
5 CU.FT. CMS CU.M. CFS CU.FT,. CMS CU.M.
i202 1.2058E 03 3.9520E-04 3.4145E 01 1 1.9439E-01 1.6795€ 04 5.5044E-03 4&,7558E N2
=02 1.1192E 03 3.6680E-04 3,1692E 01 2 1.9439E-01 1.6795E 04 5.5044E-03  4.7558F 02 S}
I~02 2.8628E 03 9.3828E-04 8.1067E 01 3 2.1200E-01 1.8317E 04 6.0033F-03 5,1869F N2 {
=02 2.4143E 03 7.9127E-04__6.8366E 01 4 . 1.903BE-0) 1,6449€ 04 5.3909E-03_ 4.6577E 02
E~02 1.9334E 03 6.3366E~04 5.4748E 01 5 1.8102E-01 1.5640FE 0% 5,1259E-93 4.4288E 02
=02 2.6931F 03 8.8266E-04 T.6261E 01 6 2.0111E-01 1,7376E 04 5.,6947F~-03 4.9202E 02
2=02 442397 03 1.3895E-03 1.2005€ 02 7 1.9334E-01 1.6704E D4 S5.,4T47E-03 4.T7302E 02 ]
£-02 2.8307€ 03 9.2774E~-04 8.0157E 01 8 1.8932E-01  1.6357E 04  5.3509E-03 4.6318E 0?2 q
E-02 2.3206E 03 7.6057€-04 6.5714E 01 9 1.8932€-01 1.6357€ 04 5.3609E-03 4,6318E N2
=02 2.1709E 03 7.1151E-04 6.14T4E 01 10 1.8932E-01 1,6357E 04 5.3609E-03 4.6318F 02 . M(
£=02 2.1403€ 03 7.0148E-04 6.0608E 01 11 1.8932€~01 1.6357E 04 5.3609€E-03 4.6318E 02
=02 2,0719€ 03 6.7904E~-04 5,8669E 01 12 1.8932E-01 1.6357E 04 5.3609E-03 4.6318F 02 .
I=02 1.9621E 03 6.4307E-04 5.5562E 01 13 1.8932€-01 1.6357€ 04 5.3609F-03 4,.6318E 02
=02 1.8242F 03 5.9787E-04 5.1656E 01 14 1.8932E~-01 1.6357€ 04 5.3609E-03 4,6318E 02
=02 1.7966E 03 5.8882E—-04 5.0874E Ol 15 1.8932E-01 1.6357E 04 5.3609E-03 4.6318€ 02
=02 1.8218E 03 5.9709E-04 5.1589€ 01 16 1.8932F-01 1.6357E 04 5,3609E-03 4,.6318F 02
=02 2.2927E 03 7.5141F-04 6.4922E 01 17 1.8821E-01 1.6261E 04 5,3295E-03 4,6047E 02
=02 3.7680F 03 1.2349E~-03 1.0670E 02 18 2.0266E-01 1.7510E 04 5.7387E-03 4.9583F 02
=02 5.0263E 03 1.6473E-03 1.4233E 02 19 2,0083E-01 1.7351FE 04 5.6868E-03 4.9134F 02
=02 3.3152F 03 1.0865E-03  9.3875€ 01 20 1.9247E~-01 1.6630E 04 5.4503E-03 4.7090F 02
=02 2.7896E 03 9.1427E-04 7.8993E 01 21 1.8764E-01 1.6212E 04 5.3134E-03 4,5907TE 02 S1
=02 2.7367E 03 B8.9693E-04 T.7494E 01 22 1.8764E-01 1.6212E 34 5,3134E-03 4.5907€ 02 C
i=02 2.7367E 03 B8.9693E-04 7.7494E 01 23 1.8764E-01 1.6212FE 04 5.3134E-03 4.,5907E 02
=02 3,1215F 03  1.0231F-03 8.8392E 01 24 1.8764E-01 1.,6212E 04 5,3134E-03 4,.5907F 02
=02 3.2804E 03 1.,0751E-03 9.2891F 01 25 1.8764E-01 1.6212F )4 5.3134E-03 4,5907€ 02
=02 2,5403E 03 B8.3257E~04 7.1934E 01 26 1.8764E-01 1.6212E 04 5.3134E-03 4.5937E 02 ]
=02 2.8125E 03 9.2179E-04 T7.9642E O1 27 1.8764E-01 1.6212F 04 5.3134E-03 4,5907F 02 2
i=02  3,4008E 03 1.1146E-03 9.6300F o1 28 1.8035E-01 1.5582E 04 5.1069E-03 4,4123F 02
i=02 2.4953E 03 8,1783E-04 7.0660F 01 29 1.7136E-01 1.4806E 04 4.8524E-03 4,1925E )2
=02 2.4693FE 03 8.0930E-04 6.9923E 01 30 1.7136E-01 1,4806E 94 4.8524E-03 4.1925E 02
—02 2.5395E 03 8.3230E-04 T.1911E 01 31 1.7136E-01 1.4806E 04 4.8524E-03 4.1925E 02
-02 8.5353E-04 AVG 1.8911E-01 5.3551E-03
8.0732E 04 2.2861E 03 TOTAL 5.0652E 05 1.4343E 04
J—
AVERAGE WEEKLY FLOW I
WEEK
UP
<02 1.9414E 03 6.3626E~04 5.4973E 01 40 1,9538E-01 1.6881E 04 5.5326E-03 4.7802E 02
-02 2,5338E 03 8.3042E-04 7T.1748E 01 C) 41 1.8989E-01 1.6407E 04 S.3771E-03 4.6458E D2 EA
-02 2,8350E 03 9.2914E-04 8.0278E 01 42 1.9316E-01 1.6689E 04 5.4697E-03 4.7258E 02 .
-02 2.8597E 03 9.3724E-04 8.0977€ Ol 43 1.8764E-01 1.6212E 04 5.3134E-03 4,.5907€ 02 WE
Fig. 3. Example of Comput.

Streamflow Summary Program



.. STREAM_FLOW SUMMARY FQOR 10/68

EAST BRANCH _

©

MAX IMUM/MININUM FLOW READINGS

WEST BRANCH

RM MAX IMUM MINIMUM STORM MAXIMUM MINIMUM
TE DATE
. CES _CMS  _ _CFS _  _____CMS . CES CMS CFS CMS
5.6951E-02 1.6127E~03 1.3189E-02 3.7348E-04 3 2.8463E-01 B8.0597E-03 1.8103E-01 5.1262E
 5.6951€-02 1.6127E-03 2.1252E-02 6.0178E-04 6 2.4570E~01 _ 6.9575E-03 1.8103E-01 S5.1262F
6.8284E-02 1.9336E-03 2.8838E-02 8.1660E-04 18 2.3032E-01 6.521BE-03 1.8764E-01 S5.3135E
4.1835E-02 1.1846E-03 3.1675E-02 8.9694E-04 20 0.0 0.0 0.0 0.0
THLY 6.8284E-02 1.9336E-03  1.25056-02 3.5411€-04  MONTHLY 2.8463E-0l 8.0597E-03 1.7137E-01 4.8527F
- o T TOTAL VOLUME BY STORM
R EAST BRANCH  ~ — — 7 B WEST BRANCH
M CU.FT. CU.M. STORN CU.FT. CU.M.
E o o DATE .
_4.8111E 03 1.3623E 02 3 2.8656E 04 B.1144E 02
5.2615E 03 1.4899E 02 6 2.8666E 04 8.1173E 02
6.5017E 03 1.8411E 02 18 2.8B65E 04 8.1738E 02
4.8196E 03 1.3648E 02 20 0.0 0.9

" NUMBER OF DAYS BY

FLOW CLASSES IN CFS

R LIMIT 0.1 0.2 0.3 0.4

0.5 1.0 1.5 5.0

[ BRANCH 31 0 0 0

0 0 0 0

[ BRANCH 0 27 4 0

» Cutput from

0 0 0 0
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HYDROGRAPH ANALYSIS

Hydrograph analysis is the investigation of the relationship between
storm rainfall and the response in streamflow. Two elements of streamflow
must be considered, 1) the volume of streamflow in relation to the volume
of rainfall, and 2) the temporary storage and release of this excess rain-
fall to form streamflow. Hydrograph analysis is thus the determination

of short-time response of the stream.

Storm Occurrences

The determination of dates, beginning times, total rainfall, and dura-

tion of storm occurrences is described in the section on "Definition and

Detection of Storms", p. 6. A storm occurrence is determined for either

subwatershed whenever a storm occurs by rainfall definition at any rain-

gage which contributes weighted rainfall to that subwatershed.

Isolation of Stream Response

During intervals without significant rainfall streamflow gradually
decreases. This stream regimen is known as a "recession" to lesser stream-
flow rates. When the stream responds to an input of rainfall sufficient
to overcome initial wetting requirements, the flow rate exceeds the
“recession" rate established prior to the storm. In terms of the stream-
flow hydrograph, the total response of the stream is that discharge in
excess of the antecedent recession.

The hydrograph is a graph of discharge versus time. The integrated
area on a hydrograph is expressible as discharge multiplied by time, which
is a volume. Mathematically, the integration of discharge across a period

of time produces volume of runoff. The volume of storm flow observed in

Mo YT, YR T AT, R NT ORI A SINTY  E Y e X
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the stream must thus be determined by integration, or a summation of flow
rates. The proper volume of flow must, in some manner, be isolated from

other non-storm streamflow.

Evaluation of Antecedent Recession

Figure 4 shows an idealized and simplified response of & stream to
an occurrence of "storm" rainfall. The observed, or recorded, streamflow
is shown by the continuous line. Initial wetting demands (interception,
depression storage, and some soil moisture recharge) can be considered
satisfied at point (t3,q3), beyond this point in time the streamflow in-
creases, crests, then recedes to near pre-storm levels. The volume of
streamflow for that particular storm is the area below the continuous
line but above some projection of the antecedent recession beneath the
current storm response. The projection is shown as a dashed line
in Fig.4. The left hand boundary of the area representing the stream
response is the point (t3,q3). The right-hand boundary is indefinite.
The volume of storm response includes the area under a recession tail
which may continue for a long time. Practical hydrograph analysis, on the
other hand, demands that some finite ending time of the storm be used.
Procedures for establishing a practical ending time and for computation
of the volume will be given later.

It is necessary to establish some means of projecting the antecedent

recession forward through point (t ) and beneath the current storm.

3293

Essentially, this amounts to fitting some mathematical function to the
antecedent recession, and then evaluating this function for times beyond

t In Fig. * the points (tl,ql), (tg,q2), and t ), represent data

3" 3293
points of stored streamflow data. The original data points punched at
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S5-minute intervals were reduced to some lesser number at non-uniform
intervals of time as described earlier. The three points shown are from
the reduced data set.

The function chosen to project the antecedent recession must possess
several properties which can be specified. First, the curve of the func-
tion must be made co-locational with the reduced data points antecedent
to the storm, one point for each parameter of the function. The curve
must, therefore, be easily fitted to such points. Second, the rate of
streamflow recession decreases as streamflow approaches some low-flow
value. Streamflow should become nearly constant near this low-flow value
after a prolonged period of no rainfall. This requires that the function
decrease monotonically and become asymptotic to some low value of stream-
flow.

The mathematical function known as the decreasing exponential has
the properties specified above. A form frequently used for streamflow

recession is

qg=ae 1 (1)
where q is stream discharge, t is time measured from some initial time,
and aq and bl are constants.

Equation 1 has one scale parameter, a., and one shape parameter, bl.
It is desirable for the function to be capable of assuming various shapes.

This is accomplished (2) by modifying the function as shown in Eq. 2.

q = ae 0t (2)
The additional shape parameter in Eq. 2 has the effect of transforming

the time scale from t to tm. The constant b controls the recession in
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the transformed time t and the interplay of the two coefficients allows

infinite variability of recession shapes.

™

If Eq. 2 is modified slightly by a re-definition of time, a2 simple
fitting process can be developed. Without this modification fitting Eq. 2

to the three points (t ,ql), (t ), and (% ) would require solution

" 2,q2 3,q3

of three rather difficult simultaneous equations. The modification con-

sists of writing Eq. 2 in the form of Eg. 3.

T

q = ae (3)
where
o Th
to-ty

This definition forces T to assume the value of zero at time tl, and the

value of unity at time tg. When T = O it can be seen in Eq. 3 that a = q -

When T = 1 it can also be seen that e_b = qg/ql. At point (ts,q3) Eq. ?

takes the form
R
= 3
9 =9 (a,/a;)

This eguation can be solved for m giving

log (az/q1)
1og Tog (a5/q7)

log T

3

With the constants a, b, and m known, Eq. 3 can be projected beneath the
hydrograph of stream response of the storm under analysis. This projection

extends forward to the ending time.

Graphical Description of Recession Function

The effect of the second shape parameter, m, in Eq. 3 is illustrated

in Fig. 5. Three curves are shown which have the points (t ) ana

l) ql
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(tg’qg) in common; specifically, the value of 9 is 10 units, the value

P s 8/10, so that

of q, is 8 units. Therefore, a in Eq. 3 is 10 and e~
the value of b can be found to be 0.233.

Curve C in Fig. 5 is of the functional form of Eq. 1. This is the
same as BEq. 3 withm = 1. Only the two points (tl,ql) and (tg,qg) are
needed for solution of Eq. 1. Since there is only one shape parameter,
b, only one curve can result, and this is the curve C.

When using Eq. 3 an additional point is necessary to evaluate the
shape parameter m. Two cases are shown in Fig. 5; Curve A lies above
Curve C, and Curve B lies below C. These curves are determined by the

requirement that A pass through gq in addition to a and 9y In the

34

same manner, Curve B passes through q3B.

The value for m for Curve A is
log (6.5/10

m = log log (8/10)
10g 2.4

0.752.

The value for m for Curve B is

10g (5.3/10)
m = log (8/10) = 1.195.

log 2.4
The effect of the small value of m in Curve A is to "stretch" the
recession trend producing a shallow, slowly descending curve. The higher
value in Curve B causes a ''compression" of the recession trend and con-
sequently steeper descending curve, which, nonetheless, bends and becomes

asymptotic to the abscissa.
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Volume of Storm Response

The area in Fig. 4 bounded by the curve of the recorded storm hydro-
graph and the projected recession curve is the volume of water representing
the stream response to the rainfall input. If the ordinate, stream dis-
charge, is measured in cfs and the abscissa, time, is measured in sec,
then any area on the graph is (ft3/sec)(sec) = £t3.

It is necessary to compute the total area between the two bounding

curves and between point t_ on the left and some projection of the storm

3
recession on the right. The computation is performed by numeric inte-
gration. Beyond the "ending time" an approximating mathematical integral
will be used. Numeric integration is necessary for most of the curve
since a mathematical function for the upper curve, the recorded storm
hydrograph, is not known.

The recorded storm hydrograph actually consists of a series of dis-
crete points. Call these points (ti,qi) where the index i will vary from
3 to N. If no recorded data point is located exactly at the ending time
the value of qy can be interpolated linearly between Ay_1 and the U
the value to the right of the ending time. For each point (ti,qi) the
projected recession must be evaluated for ti. Call these recession
points a; - Subtracting the recession ordinates from the streamflow
ordinates produces the discrete points (ti,qi-ai) which represent the
ordinates of the storm response.

It may be assumed that a straight line connects the ordinates q;-a, -

The incremental area between any two adjacent ordinates is then readily

computed. The first incremental area will be l/2(qh—au)(tu—t 3). The

second incremental area will be l/2(q5—a5+qh-ah)(t5-th). The volume of
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storm flow from time t3 to the "ending time" is the sum of these incre-
mental areas.

Beyond the "ending time" of the storm the volume in the recession
tail will be small. It will be sufficient to approximate this value with
a definite integral and thus avoid the more time consuming process of
numeric integration. The device used for the definite integral is Eq. 3
as evaluated for the antecedent recession. It is assumed that the same
recession curve will apply beyond the "ending time."

Call the ending time tN and the storm ordinate at that time Ayay as

indicated above for numeric integration. Then the projected recession is

ety ™
q = (qy-ayle b[‘z;~] (%)

where At is t2_tl used in evaluation of the shape parameters for the ante-
cedent recession. If tN.be considered zero time for the projected reces-

sion, then Eq. 4 becomes

£
_ -b (%)
a = (qy-ay)e At (5)
The approximate volume of runoff beyond the ending time is the integral
(5) of Eq. 5:
m
O r® -b (i at
V = J qdt = (qN-aN) ] e At
o o
1/m!
= At(qN-aN)—£i75 (6)

This volume plus the volume obtained by numeric integration is the total

volume of storm runoff in cubic feet.

Separation of Complex Storms

Some provision must be made for separation of the hydrographs of rain

events which follow closely upon one another. The definition of storms by
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the algorithm in Fig. 2 provides some insurance that most rain events will
be separated into a time series of distinct occurrences. However, this
cannot be taken as a guarantee that the resulting hydrographs will not
overlap in time.

Reference to Fig. 2 shows that there can be no significant rainfall
between the points labeled "End of Storm” and "End of Rain Event". If
significant rain had occurred the curve of accumulating rainfall would
have remained above the lower bounding line and an "End of Rain Event"
would not have been detected. This span of time from "End of Storm" to
"End of Rain Event' provides the insurance of separation of rain into a
series of distinct occurrences. Reference to Fig. L4, however, shows that
the time base of the resultant streamflow event extends from the point

(t ) to the ending time. Tt is possible for the second of two distinct

3293
rain events to occur before the ending time of the hydrograph of the
first event. When this happens the hydrograph of streamflow will again
begin to rise instead of receding smoothly to the ending time as indicated
in Fig. k.

In a later section of this report it will be seen that the time base
of the hydrograph will not be less than four times the duration of the
rain event. For this relative time base the open-ended ordinate, as shown
in Fig. 4, can be expected to be small. Relatively little volume of runoff
will be contained in this recession tail of the storm. Some compromise to
compute volumes of runoff for overlapping storms should, therefore, intro-
duce little error into the total storm volume.

The method devised for separating hydrographs of complex storms for

the Walker Branch Watershed Project is shown in Fig. 6. In this figure

B T
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a second storm occurs before the end of the first storm. The start of
rise of the second storm takes place at time ts where the storm ordinate
of the first storm is qS. The recession antecedent to the first storm was

evaluated by points (tl,ql), (tg,qg) and (% ) just as in Fig. L.

3°%3
It is now assumed that the shape parameters "b" and "m" of recession
Eq. 3 as evaluated for the antecedent recession, remain constant for the
"first storm recession" in Fig. 6. The "a" of Eq. 3 is the q; in Fig. 6,

and the time variable "t" of the equation is zero at time t;. The assump-
tion of constant "b" and "m" produces an equation for the recession of the
first storm which has the same shape as the antecedent recession, but
which has an initial ordinate g instead of 95 and time zero at tS.

The volume in the recession of the first storm, beyond the time ts,
can be computed from Eq. 6 by substituting qS for qN—aN.

The ordinates of the recession of the first storm are readily com-
puted from the recession equation. These ordinates can be used in analy-
sis of the hydrograph of the first storm. Additionally, these recession
ordinates can be added to the corresponding ordinates of the antecedent
recession, and these composite ordinates form a new antecedent recession
for the overlapping storm.

In the event a third storm were to occur, overlapping the second
storm, the same process can be repeated. It is only necessary to work
with the new ts and qs for the second overlapping storm. The shape para-

TRY

meters "b" and "m" must be retained since there are no new recessions dur-

ing a complex storm period which could be used for their reevaluation.
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Definition of Rainfall Excess

The volume of storm flow as computed is a consequence of rain falling
on the drainage area. However, not all rainfall becomes streamflow. Some
rain is intercepted by trees and plants, some wets the surface layers of
the soil and evaporates before it can become streamflow. A portion of the
water entering the soil profile may percolate downward and pass out of the
watershed at deep levels rather than as streamflow. The combined loss
from 211 sources is called "storm loss".

t can be seen, therefore, that storm flow computed by integration
of the stream hydrograph, represents an excess of rainfall above some
amount which is lost or diverted. The difference between measured storm
rainfeall znd measured storm runoff is the volume of rain lost or diverted.
The volume of streamflow and the volume of rainfall excess by this con-
cept are ldentical. Consequently, the method of computing storm flow has
a direct consequence in defining rainfall excess.

The term rainfall excess is used frequently in description of input-
output relationships in hydrograph analysis. However, its explicit mean-
ing always depends upon the method of computing storm flow volume. In this
report the volume of excess means the volume of total stream response as
shown in Fig. L. This volume includes water which enters the surface
layers of the s0il, flows downslope, emerges at some point, and enters
the stream channel in time to pass the stream gage before the "ending

time" of the storm hydrograph.

Time Distribution of Rainfall Excess

In the preceding section the volume of rainfall excess was defined

©o be the volume of storm flow. It is necessary to distribute this volume
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throughout the duration of the storm rainfall. The actual watershed pro-
cesses by which incoming rainfall divides into retained or diverted
amounts and the excess amounts cannot presently be stated in rigorous
mathematical form. Soil moisture theory as applied to infiltration at a
specific point can be stated. However, the integral of such a point
function, across the watershed space, is not possible. Spatial variation
of soil characteristics, of initial moisture states, and of rainfall, pre-
sent insurmountable difficulties. Superimposed on these are difficulties
produced by rapid fluctuations in rainfall rate during a storm. Conse-
quently, some approximate but rational method of determining the time
distribution of rainfall excess is necessary. This approach will be
based on macro-scale processes of the entire watershed rather than the

micro-scale processes of point infiltration theory.

Formulation of a Watershed Intake Function

It is known from infiltration theory, and by observation during rain-
fall, that intake rates into the soil are high when the soil is dry, and
lower when the soil becomes wet. Consequently, for a given storm, a
watershed can absorb rainfall at extremely high rates when the storm
begins, but increasing rates of rainfall excess will develop as the storm
progresses. It 1s also known that the intake rate does not decrease to
zero, but stabilizes at some small, asymptotic rate. If the rate at
which intake changes is proportional to the present rate, then one can
write the differential equation, Eg. 7.

af = -K (£-£_)at (7)
where df is the change in intake rate in time dt, K is a proportionality

constant, f is the current intake rate, and fc is the final rate.
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This equation can be integrated. The resulting equafion indicates that
the intake rate f varies exponentially with time. However, further modi-
fication of the equation, and the need for an efficient computational
form require instead that the differential be changed to a finite-

difference form. This form is given in Eq. 8.

)

- r = -K(?F

2 Ty -1 “Te) At (8)

where f is the intake at some time t, and ft—l is the intake at t - At.

t
Eq. 8 it is seen that when K and fc are known values of the intake

5

rate, ft can be computed from the rate ft—l' Then ft+l can be computed
from ft and so on for the entire duration of the storm.

Equation 8 is still too limited in form for practical use. For any value
K > 0 the values of intake would steadily decrease and approach fc asymp-
totically. While this is reasonable for periods with continuous moderate
rainfall, it is not reasonable for periods of light rain or no rain.
During such "bresks" in storm rainfall the potential intake rate should
show 1ittle change or else increase.

One way of controlling the potential intake rate is to make K in
Eq. 8 dependent on the rainfall in each period At during the storm. Con-
sider the form in Eq. 9.
Rt + fa - -

K=
+ -
Rt fa f

t-1 Rt
R

i

—= (9)

c t c

where Rt is rainfall during time At, and fa is an upper limit to the in-

take rate.

When Rt is large, K will approach 1, and ft in Eq. 8 will approach

Fal

£, Physically, this means during significant rains the intake rate de-

creases and approaches the final rate.
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When Rt = fc, K is zero and ft will equal ff-l'

vhen rainfall is equal to the final intake rate there is no change in

This means that

the current intake rate.

When Rt = 0 and ft—l is near fa, K will be negative and ft will be

larger than ft-l which is nearly fa' For periods without rain, and with

the intake rate high, the rate will approach the maximum rate.

When Rt = 0 and ft-l is near fc, K will approach -1 and ft will

_ . . . . .
-1 fc. Since ft—l is slightly larger than fc’ ft will be

slightly larger than f Physically this means the intake rate will

approach 2 ft

t-1°

recover from the final rate during periods of no rainfall.
If the value for K in Eq. 9 is substituted into Eq. 8, the complete
finite difference equation is given by Eq. 10:

+ - -
Rg+f,-f, , R -f, At

t=%%1 R FF -°F R, ¥ To1 ~ e (20)
t a c t c

In summary, Eq. 10 is a finite difference form for computation of

watershed intake rates. The properties for which it was developed are
as follows:
1. For periods of moderate rainfall the intake will decrease asymp-
totically to some final value fc.
2. For period of rainfall equal to the lower limit fc the intake
rate will not change.

3. For periods of low rainfall the intake rate will increase, draw-

ing away from the lower limit in what may be described as reversed

asymptotic.
L. For continued periods with little or no rain the intake rate

will approach asymptotically an upper limit fa'

¥
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If rain begins when the intake rate is near the upper limit fa’

\n

the intake rate decreases abruptly.

t should be noted that Eq. 10 cannot be readily integrated. Since
rainfell, R, is an irregular and unknown function of time, direct inte-
gration is not possible. It should be further noted that this eguation
represents intake for an entire watershed or some areal subportion of a

watershed, and is not a "point" function derived from infiltration theory.

Computation of Distributed Rainfall Excess

The watershed intake function presented in the preceding section is
descriptive of the potential of the watershed to infiltrate rainfall. It
does not mean that infiltration actually takes place at that rate.

If rainfall during some period At exceeds the average of the intake
function at the beginning and end of At, then infiltration will take

place at this average rate (ft + £ .)/2. The difference between R, and

t-1
(ft + ft_l)/2 is the rainfall excess for that period. If rainfall for
any period At is less than the average of the intake function values,
then the actual infiltration rate will be the rainfall rate and no
excess will occur.
In order to compute the rainfall excess for all periods of length
t during a storm occurrence, it is necessary to compute first the water-
shed intake function during the storm. Following this the periods during
which an excess of rain occurs can be identified, the excess computed, and

then totaled for all periods of excess. This total of excess must equal

the volume of streamflow computed in the section "Volume of Storm

Response', p. 19.
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It is possible to compute the watershed intake function from Eq. 10
if the watershed physical characteristics, fa and fc are known. To start
the process, however, some initial value of the function must also be
known. It is assumed here that the values of fa and fc can be estimated
for the watershed. However, no method is known for direct determination
of the initial value, consequently it will be computed for each storm

by trial and error.

Example of Calculation of Rainfall Excess

Table 1 shows a complete example of rainfall excess calculations.
In this example an hour unit of time is used for simplicity. However,
any unit can be used provided R, f, fa’ and fc are scaled to the appro-
priate time. Also ft and ft-l are values of the watershed intake function
separated by one unit of the time period used.

Specific features should be noted in Table 1. For the first hour,
when rainfall was low, the value of the intake function increased from
2.00 to 2.121 in./hr. A similar increase, portraying the recovery of
intake capacity, also occurred when rainfall was light at the end of the
storm. During the second hour, when rainfall was Just equal to the lower
limit of fc, the intake function remained constant at 2.121 in./hr.
During the central portion of the storm, when rainfall was high, the
intake decreased rapidly, representing reduced soil infiltration rates
over the major portion of the watershed.

The average infiltration rate for each period is shown in the next-
to-last column. Only during the 8th and 9th hours was rainfall in excess

of the average intake rate.
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Figure 7 is a graphic representation of a different rainfall situation
and different watershed characteristics. For this example two different
starting values are shown which result in different volumes of rainfall
excess. OSystematic trial values of fo are necessary until an intake
curve is computed which provides rainfall excess just equal to the volume
of total storm response.

Projection - The watershed intake function was developed for the
Walker Branch Watershed Project. It was tested by computing many intake
functions for differing values of fo, fa’ and fc. A1l computed curves
were acceptable on the basis of general configuration and empirical evi-
dence from other similar watersheds. It is necessary to estimate fa and
fc for the Walker Branch Watersheds based on the extent of the various
soils groups and their infiltration properties.

It is hypothetically possible to apply the intake Eq. 10 to sub-
portions of the watersheds if rainfall and/or soil characteristics make
gross watershed averages appear unrealistic. It is also possible that
in some secondary system of analyses fo’ fa’ and fc can be found by curve-
fitting procedures which will relate and scale these properties to soil
moisture, surface hydrologic condition, and soil characteristics on many
research watersheds.

No method is presently known by which theoretical "point infiltration"
functions can be integrated over complex watershed space and complex rain-

fall time to produce rigorous solutions for watershed intake.

Watershed Transfer Function

Up to this point the volumetric relationship between rainfall on the

watersheds and consequential streamflow has been established for each
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storm that occurs. The distribution of rainfall excess in sequential
periods of time during the storm has also been established. There re-
mains to develop some mathematical representation of the process by
which rainfall is temporarily stored in the watershed and gradually re-
leased to form streamflow. Some lapse of time is required to physically
pass the excess rainfall from its point of impact in the watershed to the
point of concentration at the stream gage. During this passage rapid
fluctuations in rainfall are filtered which results in smoother and more
gradval fluctuations in streamflow than in original rainfall.

As in the case of the watershed intake function, no methods are

presently known for rigorous determination of the process which will con-

vert rainfall excess to streamflow. Instead, the systems analysis approach

of correlating inflow and outflow must be followed. A functional form is
hypothesized which will operate on the rainfall input to generate the

streamflow output.

Inflow-Outflow Computation

Table 2 shows the computation of streamflow at discrete time units.
For this example values of stream discharge, Qt’ are generated by oper-
ating on four sequential values of rainfall excess, r(T), by a transfer
function, n(T). The entire process is a discrete form of the convolution

integral (3) shown in Eq. 11.
%
o = I r(r) w (6-7) an (11)
0

where t is real time during the storm, and T is a time parameter of inte-
gration. The discrete form is generally used in hydrologic practice be-

cause mathematical functions for r (1) and u (T) are not normally known.

L e v e
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In the set of equations in Table 2 it can be seen that N simul-
taneous equations express N ordinates of the total stream response hydro-
graph. These N ordinates are known following the isolation of the current
storm from the antecedent recession. The increments of rainfall excess
are known following trial and error application of the loss equation.
Therefore, only the set of ordinates, U, of the transfer function are
unknovmn.

Since the number of unknowns and the number of equations are equal,
the set of equations could be solved for the unknown ordinates. In fact,
a triangular condition exists at the beginning of the storm so that such
a solution is extremely easy. However, a different method of solution
is required since many errors and indeterminant elements are present.
Therefore, a method of solution is used which produces some average or
optimum set of ut's in the presence of such errors. Solution by the
method of least squares can accomplish such an "averaging' solution.

In order for an averaging process to work it is necessary to reduce
the number of unknowns to some order less than the number of equations.
This reduction is possible by interpolating for some of the ut’s from
adjacent values. Many types of interpolation are possible, from simple
linear to polynomial or trigonometric forms. The linear forms lead to
segmented functions, which are easy to use with non-uniformily spaced

ordinates, and are the forms chosen for the Walker Branch Watershed

analysis.

Form of the Transfer Function

The general procedure in hydrologic analysis has been to specify some

functional form and then evaluate this transfer function by the input-output
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correlation. Following the conventional approach, the same functional
form is evaluated for each storm. Any optimizing, or fitting procedure,
can only give the "best" shape parameters of that function. There is no
direct evidence as to whether the form of the function is changing from
storm to storm. A different procedure is both desirable and possible (4).

The approach used in this report is to consider the transfer function
to be made up of a series of connected straight-line segments. Examples
of such transfer functions are shown in Fig. 8. These segmented functions
are approximations of smoothly-continuous but unknown functions. One
must realize that the linear segments are not simply chords of the under-
lying smooth functions; rather, the segmented forms must be considered
optimized substitutions for the continuous forms.

A full understanding of the concept of linear segmented forms as
substitutions for smoothly continuous curvilinear forms can be gained
from an example taken from. (4). This example considers a 5-point set of
values ¥q» y2, y3, yu, and y5, assumed taken from some continuous func-
tion. It is desired to substitute two linear segments for this set.

3"

3'and y5, the two segments thus have the

value ¥, in common. If the values are uniformly spaced along a time axis,

The first segment is specified by ordinates yl'and v The second seg-

ment is specified by ordinates y

the value to substitute for ¥, is (yi'+ yé)/E. Similarly the value to
substitute for yh is (y3'+ yé)/Q. An error exists between each pair,
which may be defined by yi - yl’, y2 - (yl’ + y3')/2, and so on. An
optimal substitution of the two segments for the original 5-point set is
accomplished by least squares. While it has been specified that a hinge
between the segments is located at the central value, no functional values

are pre-set.
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The use of least squares as the transformation process proceeds as

follows. The algebrazic expressions for the 5 errors are squared and
5 -

These unknowns may be considered variables since it is desirable to allow

totaled. The expression contains three unknowns; yl', y:' and y

them to seek such values so that the sum of the 5 squared errors is =
minimum. It is a simple process to partially differentiate the total
squared error with respect to each of the three unknowns. This set of
equations is set equal to zero for the condition of minimization and the

equations are solved simultaneously. Values for yl', y " result

3 9
directly. Values for y2' and yh' are obtained by the simple linear inter-
polation specified by the segmented functional form.

The solution is presented in the set of Eqs. 12. This was the set

of Egs. 7 in the reference paper (k).

v, = (/35)(29y, + 12y, - 5y3 = 2y * ¥s)

Vo' = (1/70)(2ky, + 22y, + 20y, + By, - ly,)

v30 = (/D (yy + 2y, + 57y + 2y, - Vs) (12)
vy, = (1/70)(-ky, + 8y, + 20y, + 22y, + 2ky,)

ve = (1/35)(y, - 2y, - Sv3 + 12y, + 29y,)

Following the solution for the segmented functional values the errors
can be computed. These are the differences between the original points
and the computed points. The 5 error-equations are presented in Egs. 13.

This was the set of Eqs. 8 in the reference paper (L).

=
Il

N (1/35)(6yl - 12y, + Syy *+ 2y, - y5)

Ep = (1/70)(-24y, + 48y, - 20y, - 8y, + bys)

By = (/D - 2y + 2y; - 2y + ) (13)
El} = (1/70)(3’&1 - 8y2 = 2Oy3 + )48y1¥_ - 2)4'3/'5)

E_ =

5 (1/35)(-yl + 2y, + 5y5 - 12y + 6y5)
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Equations 13 and their derivation now illustrate three primary
points: 1) The errors at all points enter into the solution, including
those values where interpolations are made. 2) While the location of the
hinge must be specified, this does not determine the value of transformed
points. Rather transformation by least squares establishes the values.
3) Only three values (unknowns) were determined. In the example a 5-to-3

averaging of the errors was thus obtained.

Analytical Transformation of the Transfer Function - The approximating form

of the transfer function, illustrated by the straight-line segments of
Fig. 8, will now be combined with the discrete convolution in Table 2.
First, however, the algebraic form of the substitution will be given.
This is expressed by the set of eguations in Table 3. The transformation
is accomplished by specifying ordinates at the angle-points where linear
segments connect. At these points the ordinates plus some unknown error
equal the ordinates of the original transfer function. The intermediate
ordinates of the linear segments can be inserted directly by simple linear
interpolation. These interpolated values plus some unknown error also
equal the corresponding ordinates of the original transfer function.

The enforcement of an averaging process is evident in Table 3. The
20 unknown discrete ordinates of the origingl transfer function have been
reduced to 8 unknown ordinates of the approximating linear segments. The

ordinate O for example, now occurs in 6 of the equations, and a method

11’
of solution, such as by least squares, must produce some best average
value in these 6 equations. It should be specifically noted that the

substitution of linear segments is not made by drawing chords across

selected areas of the original function. All ordinates of the approximating




Units

of

Time

1C
11

12

1k
15
16
17
18
19

20

Lo

Angle

Points

Table 3. Transformation of the Transfer Function
Ordinates
of the Approximating
Transfer Linear
Function Segments
0 = 1/2 0, + E,
u, = 0, + E,
ug = 1/2 (o2 + Ou) + E3
uh = Oh + Eh
Uy = 05 + E
ug = 0p + B
U = 1/2 (o6 + 08) + E7
ug = Og + Eq
Uy = 1/3(208 + oll) + E9
w g = 1/3 (08 + eoll) * Ep
k] = Opp # Epy
Yo = WM(30,, + o0 ) v E
Uy 5 = 1/&(20ll + 2015) + E13
0, = 1/k4 (Oll + 3015) + Ellp
u15 = O15 + El5
"6 = /50805 + 0,0) ¢ By
v o = 1/5(3015 + 2020) + E17
Wg = 1/5(2015 + 3020) * Epg
it = 1505+ M0,) v Eg
Y20 = O0 ¥ o0
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function, including those at angle points, will differ from the original
function. In fact, the placement of the approximating function over the
original function can only be accomplished by specifying some optimization
process operating on the ordinate errors, E.

If a transfer function ut(t = 1, 20) were known, the set of eguations
in Table 3 could be solved directly by least squares to get an optimum
set of linear ordinates, the O's. However, in practical storm analysis
the u,'s are not known, and the set of ordinates, O, must be derived

t

directly from the storm rainfall and streamflow.

Solution for the Linear-Segmented Hydrograph - The transforming equations

of Table 3 may be substituted into the discrete convolution of Table 2.
The result is a system of linear equations relating rainfall excess, the
transformed transfer function, and the total stream response hydrograph.
This set of eguations is shown in Table 4. 1In Table 4 the ordinate errors
shown in Table 3 have not been given explicitly. In order to produce an
"averaged" solution of the Table 4 equations some residual error must also
be considered attached‘to each equation of the set. The transform errors
of Table 3 are thus combined with the discrete convolution errors in Table
4.

Tt is possible to rearrange the left-hand sides of the Table 4 egua-
tions. An arrangement by collection of terms with common ordinates is
shown in Table 5. The common ordinates are factored out and placed at
the head of the respective columns. The equal signs and the plus signs
between major segments of the equations have also been omitted.

Table 5 provides an arrangement of data, the rainfall excess terms,

and stream hydrograph ordinates, which permits direct application of the
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Arrangement for Least-squares Solution of

Table 5.

Transfer Function Ordinates
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method of least squares for solution of the set of transfer function
ordinates, O. The values of 8 ordinates will be averaged over 20 stream
ordinates by least-square definition. It can be seen that the system of
interpolation for the linear-segmented transfer function has produced a
set of numeric operators on the rainfall excess terms. Such operations
on the excess terms produce the X's of a multiple regression equation.
The storm hydrograph ordinates, Q, are obviously the Y's of a multiple
regression.

The example shown here is for a matrix dimension produced by 20
storm ordinates and 4 periods of rainfall excess. However, the basic
concepts are general. Any number of storm ordinates could be used with
any number of rainfall terms. Other transforms of the transfer function
than that shown in Table 3 could also be used. The entire process is
being programmed for electronic data processing for application to all
storms of record on Walker Branch Watershed. TFollowing such application
for solution of the "angle-point" ordinates specified in Table 5, the
ordinates between angle points can be found by the linear interpolation
indicated under "Approximating Linear Segments" in Table 3.

The concept of a segmented transfer function produces a linearized
and discrete convolution form. This simplified form does not require much
time or effort, either in preliminary data arrangement or in storm analysis,

when considering systematic processing of all storms in a hydrologic record.

Time~-Separated Hydrographs

The Re-constructed Hydrograph - It is well known that stream response to a
storm can be computed from the increments of rainfall excess and the ordi-

nates of a transfer function, as shown by the discrete convolution in

P P ar maih i+ A1 - gt 3~ o b SRR

VT T s Ty SVQeNEL T TR I AT 7 ST RN G AR M- (NS MY, TR AT cmTmeeY. T, vy
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Table 2. 1In earlier analytical techniques the transfer function was
usually determined from only a small number of selected storms meeting
idealized criteria. TIts suitability for use with long-duration storms of
complex rainfall pattern was determined by trial computation. The com-
puted ordinates were compared, usually graphically, with the observed
storm ordinates.

After a linear segmented transfer function has been determined by
least squares, it can also be applied to the increments of rainfall excess,
and the total stream response can be calculated. This process is identi-
cal to the computation of "predicted values" for comparison with "observed
values" in ordinary multiple regression analysis. The "predicted values"
form a reconstructed version of the stream response. It should be noted

that the total response above the antecedent base flow is reconstructed.

Partially Re-constructed Hydrographs - Normally it is not recognized that

partial values of the reconstructed storm hydrograph can be used to form

a time-separated hydrograph. This procedure will be developed by con-
sidering the full set of transfer function ordinates, O, which are approxi-
mations for the u's in Table 2.

The area enclosed by the polygon defined by the ordinates O repre-
sents unit volume of total runoff. Even though continuity of mass was
not specifically stated, it is implicit in the equations in Table 2. If
the time-base of the transfer function is N time units long, then all
the ordinates from time zero to time N define the total volumetric dis-
tribution. However, if one considered dropping the ordinate ON’ then the
partial transfer function, defined by ordinates from time zero to time

N-1 must represent a reduced volume. The volume unaccounted for is the

[

X




46

volume of water with travel-time through the watershed ranging from N-1
to N. The same logic applies to any ordinate at some time T between
zero and N. The partial transfer function composed of ordinates from
zero to T represents the volume of water with travel time < T.

One can now consider the effect of systematic elimination of the terms
from the eguations in Table 2. If one drops the terms in the left sides
of these equations which contain O1 (substituted for ul), then the first
four stream response ordinates are reduced. This reduction represents
water with travel time from zero to one time unit. If now the O2 terms
are additionally dropped, this further reduction represents volume of
water with travel time from one to two time units. Systematic dropping
of the transfer function terms produces sets of partial response ordinates.

By plotting all such sets of partial ordinates under the storm hydrograph,

a time-separated hydrograph is produced.

Examples of Time Separated Hydrographs - Figure 9 shows a time separated

hydrograph constructed from the Transfer Function 1 of Fig. 8 and the
increments of rainfall excess as shown. Figure 10 shows a time separated
hydrograph constructed from the same rainfall excess but using Transfer
Function 2 from Fig. 8.

In Pigs. 9 and 10 the solid bounding line represents total stream
response to the input rainfall excess. As such it represents increase
in streamflow above antecedent flow regardless of whether this increase
is called surface, subsurface, or ground-water runoff. The time separa-
tion lines were constructed for delay time increments of one hour. Areas
on the graph between indicated delay times represent volﬁmes of flow

between these delay times.



ft3/sec

B i aas Ty mer 2 e}

L7

ORNL—-DWG 68-—6847

— | 1|
0.2
_I— =——RAINFALL EXCESS
04
7 A I OUTFLOW HYDROGRAPH — |
A
\
/I‘
6 AL
)
l i
5 / '//\\‘ 1 \
/\| \
/| I\
I\
4 2 LA\
| DELAY TIME

2 7 = 77
VTV IR =—=\
AT AV Iy P R 1o
/ /1 7N A
4 / / / / // / I/ ////// /
2N !/ 7/
/ / // P4 /////// -
0 / Z /// /// 1~
0 2 4 6 8 10 12 14 16 18
TIME (hr)

Fig. 9. A Time Separated Hydrograph Constructed
from Transfer Function 1 of Fig. 8, p. 37.

AT N S TP VAT TN T - e R



inches

f13/sec

ORNL—DWG 68-—-6849

i | ' ! |
— 1 ] | i
0.2 % ‘
H
| l«— RAINFALL EXCESS |
04 ,
t
I L |
| : , : ! |
7 : | ! I i
§ OUTFLOW HYDROGRAPH
! ; ; '
H k /4 I
. | 7 \
6 ; V/%/jgr/’ ! ,
t V
I\ i |
H \ i
! \ :
| \ I
\
5 Sy ;
]
/\\\ i
4 3 ?
// ,\\ DELAY TIME
[~ 4 I
TN
3 s
T~~~ /\\
~ [y Uyt
/s / 7 / —_——
2 // __/’ /- 8 v
T Y s 19 4
/ / e /J ¥ 10
/ /A — -
Iy
1 // / /,/ 7/ i
ViV
{ /// ///
sV T
o} 2 4 6 8 10 12 14 16 18

TIME (br)

Fig. 10. A Time Separated Hydrograph Constructed
from the Same Rainfall Excess in Fig. 9, p. L7,
but Using Transfer Function 2 of Fig. 8, p. 37.
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Figure 9 shows a total peak slightly higher than that of Fig. 10
because of the higher peak ordinate of the associated transfer function.
A more striking difference, however, is found in the volumes of water
with short delay times. TFigure 9 contains a much greater volume in O-
to 3-hour delay time than does Fig. 10. Beyond about 3 hours delay time
the pattern of separation is similar in the two figures, though delayed
flows are somewhat greater in Fig. 10.

The more rapid response of the watershed implied in Transfer
Function 1 as compared to Transfer Function 2 can be effectively demon-
strated by comparing the ordinates at 4 hours in Figs. 9 and 10. The
total ordinate is about 5.8 cfs in Fig. 9. The portion of the ordinate
with delay time of zero to two hours is 4.5 cfs. 1In Fig. 10, on the
other hand, the total ordinate is 4 c¢fs. But the portion of this ordi-
nate with delay time of zero to two hours is only 2.3 cfs.

Now consider some sample for chemical analysis taken at time 4 hours
in Figs. 9 and 10. Consider further that presence of this chemical in
the stream is associated with a surface source area, and, therefore,
with surface-derived runoff. It would be expected that a higher absolute
value of the chemical would be found with the 4.5 cfs rapid response of
Fig. 9 than with the 2.3 cfs rapid response of Fig. 10. Similar differ-

ences can be inferred at other times in the outflow hydrographs.

Specific Transfer Functions for Walker Branch Watersheds

The principles of linearized watershed transfer functions, and their
use in reconstruction of storm hydrographs have been discussed. Specific

forms for the Walker Branch Watershed are discussed below.
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An important feature of the program is that the hydrograph of each
storm will be analyzed separately. It is anticipated that rainfall
amounts and durations will vary greatly, from abrupt, intensive, summer
thunderstorm types, to prolonged, moderate, winter cyclonic types. Short
storms reguire information at close intervals to produce a precise des-
cription of rainfall and streamflow fluctuations. Prolonged storms do
not require information at close intervals and use of the original data
punched at 5-minute intervals would be inefficient computer usage. Con-
sequently a varying base period for the interval between data points was
chosen, the periods being integral numbers of 5-minute periods. Long
duration storms can thus be treated with rainfall composited from several
5-minute periods. Streamflow data are also spaced at these longer inter-
vals.

Storm Scales ~ An expanding system of time scales was designed to

cover a great range of storm duration. Table 6 shows the scales with
pertinent storm characteristics. The scales are determined by an expan-
sion factor of 4. Scale a is used with short-duration storms, uses rain-
fall input in 5-minute increments and anal§ies a 6-hour segment of the
resulting stream hydrograph. ©Scale d is applied to long storms, uses rain-
fall input in 320-minute increments and analyzes a 16-day segment of the
stream hydrograph. Scales b and c¢ are for storms of intermediate duration.
After rainfall amounts and durations are determined for each storm

occurrence, as described in the section "Definition and Detection of

Storms," p. 6, the appropriate scale for storm analysis is chosen. The

scale is set by comparing storm duration with "Upper Limit of Rainfall

Duration" in Table 6.
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Linearization of Transfer Function - In earlier discussion of the

linearly segmented transfer function it was vpointed out that the positions
of the connections, or "hinges" between the segments must be arbitrarily
selected. Table 7 shows the position of the hinges chosen for the trans-
fer function for the Walker Branch Watershed project. The scales in

this table are identical to those in Table 6.

Data Manipulation - Following defermination of the appropriate scale-

factor for a storm it is necessary to arrange both stored rainfall and
streamflow data into suitable form for least-squares determination of
the numerical values of the transfer function ordinates.

Rainfall is arranged by accumulating S5-minute increments into "scale-

11

period” increments. For example, for Scale b storm rainfall ic incre-
mented by 20-minute periods. No change is necessary for Scale a storms
since these use 5-minute units of rginfall.

Streamflow ordinates must also be determined at "scale-period"
intervals. Again, using Scale b as an example, ordinates must be deter-
mined at 20-minute intervals. Since the streamflow data are not "stored"
at reguired intervals, the necessary values must be determined by inter-
polation. Simple linear interpolation is sufficient since data points
selected for storage would include all those needed to describe the storm
hydrograph.

Consider streamflow data points stored in the form Q (I) and t (I)
where Q is discharge, t is time, and I is an index describing relative
position in time sequence. Compute a time parameter, t’= (SU)(J), in
which SU is the scale unit of time (same as "Input Unit of Rainfall" in

Table 6) and J is the sequence of "Basic Time Units" in Table 7. Then



Table 7. Linearized Transfer Function Walker Branch Watershed
Basic Time Transfer
Units Function  Hinge a b
(a, b, ¢, or d Scales) (cfs) Locations (mins) (hrs)
0] zero
1 0 * 5 1/3
2 1/2(0l + 03)
3 0 * 15 1
4 1/3(203 + Og)
5 1/3(0, + 20)
6 O * 30 2
8 1/4(20; + 20, )
9 1/4(0g + 30;()
10 010 * 50 3-1/3
11 1/8(70lo + 018)
12
13
1L
15
16
17 1/8(0lo + 7018)
18 08 * 90 6
19 1/12(11018 + 030)
HXHHK ko xd
29 1/12(0)g + 110,5)
30 o30 * 150 10
31 1/18(17030 + Oh8)
HHRHH KoK
W7 1/18(0, + 170,4)
48 O)g * 240 16
49 1/2&(23oh8 + 072)
WK KKK
yal l/Eh(°u8 + 23072)
T2 o72 360 24
73 1/24(-0)g + 25072)
T4 1/24(-20,4 + 260,,)
KKK KK
8
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Time for Scale

1/2&(—120h8 + 36072)

[+
(hrs)

1-1/3

13-1/3

24

o)

6L

96

d
(hrs)

5-1/3

16

32

53-1/3

96

160

256

384
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t” can be located in the record by the criterion t [I]<t <t [T +1].
Following this an interpolated ordinate for each value J can be computed

by Eg. 1k.

Q(J) = %ﬁ%x Q [I+1] - @ [I] + q [1I] (1)

All data are now ready for construction and solution of equations
similar to Table 5, but are adapted specifically for Walker Branch

Watershed.
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